Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 677860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368128

RESUMO

Erlotinib (ER), as an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), has a significant therapeutic effect in lung cancers. However, EGFR TKI resistance inevitably occurs after treatment for approximately 12 months, which weakens its antitumor effect. Here, we identified miR-185-3p as a significantly downregulated microRNA responsible for acquired EGFR TKI resistance in cells and patients with lung cancer. qRT-PCR and Western Blot were performed to determine the relative expression of miR-185-3p in ER-resistant tumor tissues and cells. The viability and apoptosis of lung cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay and flow cytometry, respectively. The binding between miR-185-3p and liver-type phosphofructokinase (PFKL) was verified by dual luciferase assay. It was found that overexpression of miR-185-3p conferred ER sensitivity in lung cancer cell lines. MiR-185-3p was downregulated in ER-resistant lung cancer cells (H1299/ER and A549/ER). MiR-185-3p inhibited proliferation and induced cell apoptosis in ER-resistant cells. Mechanistically, miR-185-3p downregulation contributed to ER resistance through upregulating the PFKL. Moreover, Mesenchymal to epithelial transition (MET) oncoprotein promoted EGFR-TKI resistance by regulating miR-185-3p and PFKL. These findings revealed a novel mechanism in which downregulation of miR-185-3p may induce overexpression of PFKL and MET and confer ER resistance in lung cells. Combination of PFKL/MET inhibitors and EGFR TKIs could be a rational therapeutic approach for lung cancer patients with EGFR mutation.

2.
Cell Prolif ; 52(6): e12691, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31599069

RESUMO

OBJECTIVES: Periodontitis is an inflammatory immune disease that causes periodontal tissue loss. Inflammatory immunity and bone metabolism are closely related to periodontitis. The cannabinoid receptor I (CB1) is an important constituent of the endocannabinoid system and participates in bone metabolism and inflammation tissue healing. It is unclear whether CB1 affects the mesenchymal stem cell (MSC) function involved in periodontal tissue regeneration. In this study, we revealed the role and mechanism of CB1 in the osteo/dentinogenic differentiation of periodontal ligament stem cells (PDLSCs) in an inflammatory environment. MATERIALS AND METHODS: Alkaline phosphatase (ALP) activity, Alizarin Red staining, quantitative calcium analysis and osteo/dentinogenic markers were used to assess osteo/dentinogenic differentiation. Real-time RT-PCR and Western blotting were employed to detect gene expression. RESULTS: CB1 overexpression or CB1 agonist (10 µM R-1 Meth) promoted the osteo/dentinogenic differentiation of PDLSCs. Deletion of CB1 or the application of CB1 antagonist (10 µM AM251) repressed the osteo/dentinogenic differentiation of PDLSCs. The activation of CB1 enhanced the TNF-α- and INF-γ-impaired osteo/dentinogenic differentiation potential in PDLSCs. Moreover, CB1 activated p38 MAPK and JNK signalling and repressed PPAR-γ and Erk1/2 signalling. Inhibition of JNK signalling could block CB1-activated JNK and p38 MAPK signalling, while CB1 could activate p38 MAPK and JNK signalling, which was inhibited by TNF-α and INF-γ stimulation. CONCLUSIONS: CB1 was able to enhance the osteo/dentinogenic differentiation ability of PDLSCs via p38 MAPK and JNK signalling in an inflammatory environment, which might be a potential target for periodontitis treatment.


Assuntos
Inflamação/metabolismo , Ligamento Periodontal/citologia , Receptor CB1 de Canabinoide/metabolismo , Células-Tronco/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Dentinogênese/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Osteogênese/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Oncol Lett ; 15(6): 9033-9042, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29844819

RESUMO

The present study evaluated the expression and potential role of CD63 in the migration and invasion of tongue squamous cell carcinoma (TSCC) cells. Immunohistochemistry (IHC) was used to investigate the association between the expression level of CD63 protein and the histological differentiation of samples from 40 patients with TSCC and four normal tongue tissue specimens. RNA interference (RNAi) and gene transfection technology were used to alter the expression of CD63 in TCA8113 cells. The stable silencing and overexpression of CD63 in the TCA8113 cell line was used to assess the impact of the CD63 expression level on the migratory and invasive abilities of TCA8113 cells in a wound healing assay and a Transwell invasion assay. The effect of CD63 on the expression of matrix metalloproteinase (MMP)-2 and -9 were evaluated by western blot analysis. The results of IHC revealed a positive association between the CD63 expression level and the histopathological differentiation of TSCC and a negative association between the CD63 expression level and lymph node metastasis in TSCC. Western blotting revealed that the expressions of MMP-2 and MMP-9 were clearly upregulated in CD63-silenced TCA8113 cells but reduced in CD63-overexpressing TCA8113 cells, compared with the control. The wound-healing speed and the number of cells invading Matrigel-coated filters were negatively associated with the CD63 expression level. In summary, the results of the present study revealed that CD63 may be an inhibitor of TSCC malignancy and lymph node metastasis and may have applications in the prediction of prognosis and gene therapy for patients of TSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...